Harnessing irreversible thermal strain for shape memory in polymer additive manufacturing
نویسندگان
چکیده
منابع مشابه
New-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing
Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...
متن کاملShape-Memory Polymer Composites
The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily for clay and polyhedr...
متن کاملShape recovery and irrecoverable strain control in polyurethane shape-memory polymer.
In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-...
متن کاملAn experimental investigation on the energy storage in a shape-memory-polymer system
In this paper, the effect of thermomechanical loading on the behavior of deflection-based harvested energies from a shape memory polymer system is experimentally investigated. Samples are created with honeycomb cells from poly-lactic acid using additive manufacturing techniques. The shape memory effect in shape recovery and force recovery paths are studied under thermomechanical tests in bendin...
متن کاملUltra-Precision Metal Additive Manufacturing for Thermal Management of Microelectronics
Thermal management of microelectronic devices is an ongoing technological challenge that directly affects device-level and system-level performance and reliability [1]. The fundamental process of electron transport in a transistor device results in dissipation of heat. This causes temperature rise, which in turn limits device performance. For most semiconductor devices, performance goes down wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Polymer Science
سال: 2019
ISSN: 0021-8995,1097-4628
DOI: 10.1002/app.48239